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Aim 

● More dynamic game worlds. 

 

 

 



Demoscene? 
● I make demos 

● “Like games, crossed with music videos” 

● Linear, non-interactive, scripted 

● All generated in real-time  

● On consumer-level PC hardware 

● Usually effect-driven & dynamic 

● Relatively light on static artist-built data 

● Often heavy on procedural & generative content 

 

 



DirectX 11? 

● DirectX 9 is very old 
● We are all very comfortable with it.. 
● .. But does not map well to modern graphics hardware 

● DirectX 11 lets you use same hardware smarter 
● Compute shaders  
● Much improved shading language 
● GPU-dispatched draw calls 
● .. And much more 

 
 



Procedural Mesh Generation 

A reasonable result from random formulae 
(Hopefully a good result from sensible formulae) 

 



Signed Distance Fields (SDFs) 

● Distance function:  

● Returns the closest distance to the surface from a 
given point 

● Signed distance function:  

● Returns the closest distance from a point to the 
surface, positive if the point is outside the shape and 
negative if inside 



Signed Distance Fields 

● Useful tool for procedural geometry creation 

● Easy to define in code .. 

● .. Reasonable results from “random formulae” 

● Can create from meshes, particles, fluids, voxels 

● CSG, distortion, repeats, transforms all easy 

● No concerns with geometric topology  

● Just define the field in space, polygonize later   

 

 



A Box 
Box(pos, size) 

{ 

  a = abs(pos-size) - size; 

  return max(a.x,a.y,a.z);  

} 

*Danger: may not actually compile 



Cutting with Booleans 
 

d = Box(pos) 

c = fmod(pos * A, B) 

subD = max(c.y,min(c.y,c.z)) 

d = max(d, -subD) 



More Booleans 
 

d = Box(pos) 

c = fmod(pos * A, B) 

subD = max(c.y,min(c.y,c.z)) 

subD = min(subD,cylinder(c)) 

subD = max(subD, Windows()) 

d = max(d, -subD) 



Repeated Booleans 
 

d = Box(pos) 

e = fmod(pos + N, M) 

floorD = Box(e) 

d = max(d, -floorD) 



Cutting Holes 
 

d = Box(pos) 

e = fmod(pos + N, M) 

floorD = Box(e) 

floorD = min(floorD,holes()) 

d = max(d, -floorD) 



Combined Result 
 

d = Box(pos) 

c = fmod(pos * A, B) 

subD = max(c.y,min(c.y,c.z)) 

subD = min(subD,cylinder(c)) 

subD = max(subD, Windows()) 

e = fmod(pos + N, M) 

floorD = Box(e) 

floorD = min(floorD,holes()) 

d = max(d, -subD) 

d = max(d, -floorD) 

 

 



Repeating the Space 
pos.y = frac(pos.y) 

d = Box(pos) 

c = fmod(pos * A, B) 

subD = max(c.y,min(c.y,c.z)) 

subD = min(subD,cylinder(c)) 

subD = max(subD, Windows()) 

e = fmod(pos + N, M) 

floorD = Box(e) 

floorD = min(floorD,holes()) 

d = max(d, -subD) 

d = max(d, -floorD) 

 



Repeating the Space 
pos.xy = frac(pos.xy) 

d = Box(pos) 

c = fmod(pos * A, B) 

subD = max(c.y,min(c.y,c.z)) 

subD = min(subD,cylinder(c)) 

subD = max(subD, Windows()) 

e = fmod(pos + N, M) 

floorD = Box(e) 

floorD = min(floorD,holes()) 

d = max(d, -subD) 

d = max(d, -floorD) 



Details 
AddDetails() 



Details 
DoLighting() 

ToneMap() 

 



Details 
AddDeferredTexture() 

AddGodRays() 



Details 
MoveCamera() 

MakeLookGood() 

 

 

Ship It. 



Procedural SDFs in Practice 

● Generated scenes probably won’t replace 3D artists 

                    
 

 



Procedural SDFs in Practice 

● Generated scenes probably won’t replace 3D artists 
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Procedural SDFs in Practice 

● Generated scenes probably won’t replace 3D artists 

● Generated SDFs good proxies for real meshes 
● Code to combine a few primitives cheaper than art data 

● Combine with artist-built meshes converted to SDFs 
● Boolean, modify, cut, distort procedurally 

 

 



Video 

● (Video Removed) 
● (It’s a cube morphing into a mesh. You know, just for fun etc.) 



SDFs From Triangle Meshes 



SDFs from Triangle Meshes 

● Convert triangle mesh to SDF in 3D texture 

● 32^3 – 256^3 volume texture typical 

● SDFs interpolate well..       bicubic interpolation 

● .. Low resolution 3D textures still work well 

● Agnostic  to poly count (except for processing time) 

● Can often be done offline 



SDFs from Triangle Meshes 

A mesh converted to a 64x64x64 SDF and polygonised.  
It’s two people doing yoga, by the way.  



SDFs from Triangle Meshes 

● Naïve approach? 
● Compute distance from every cell to every triangle 

● Very slow but accurate 

● Voxelize mesh to grid, then sweep?   UGLY 
● Sweep to compute signed distance from voxels to cells 

● Voxelization too inaccurate near surface.. 

● ..But near-surface distance is important - interpolation 

● Combine accurate triangle distance and sweep 



Geometry Stages 

● Bind 3D texture target 

● VS transforms to SDF space 

● Geometry shader replicates 
triangle to affected slices 

● Flatten triangle to 2D 

● Output positions as TEXCOORDs.. 

● .. All 3 positions for each vertex 



Pixel Shader Stage 

● Calculates distance from 3D pixel to triangle  

● Compute closest position on triangle 

● Evaluate vertex normal using barycentric 

● Evaluate distance sign using weighted normal  

● Write signed distance to output color, distance to depth 

● Depth test keeps closest distance 



Post Processing Step 

● Cells around mesh surface now contain accurate 
signed distance 

● Rest of grid is empty 

● Fill out rest of the grid in post process CS 

● Fast Sweeping algorithm 

 



Fast Sweeping 

d = maxPossibleDistance 

for i = 0 to row length 

 d += cellSize 

 if(abs(cell[i]) > abs(d)) 

  cell[i] = d 

 else 

  d = cell[i] 

● Requires ability to read 
and write same buffer 

● One thread per row 
● Thread R/W doesn’t overlap 

● No interlock needed 

● Sweep forwards then 
backwards on same axis 

● Sweep each axis in turn  



SDFs from Particle Systems 



SDFs From Particle Systems 

● Naïve: treat each particle as a sphere 

● Compute min distance from point to particles 

● Better: use metaball blobby equation 
● Density(P) = Sum[ (1 – (r2/R2))3  ] for all particles   

● R : radius threshold 

● r : distance from particle to point P 

● Problem: checking all particles per cell 



Evaluating Particles Per Cell 

● Bucket sort particles into grid cells in CS 

● Evaluate a kernel around each cell 

● Sum potentials from particles in neighbouring cells 

● 9x9x9 kernel typical  
● (729 cells, containing multiple particles per cell, evaluated for ~2 million grid cells) 

● Gives accurate result .. glacially 

● > 200ms on Geforce 570 



Evaluating Particles, Fast 

● Render single points into grid 

● Write out particle position with additive blend 

● Sum particle count in alpha channel 

● Post process grid 

● Divide by count: get average position of particles in cell 

● Evaluate potentials with kernel - grid cells only 

● Use grid cell average position as proxy for particles 



Evaluating Particles, Faster 

● Evaluating potentials accurately far too slow 
● Summing e.g. 9x9x9 cell potentials for each cell.. 

● Still > 100 ms for our test cases 

● Use separable blur to spread potentials instead 
● Not quite 100% accurate.. But close enough 

● Calculate blur weights with potential function to at least feign 
correctness 

● Hugely faster - < 2 ms  

 

 



Visualising Distance Fields 

Ray Tracing & Polygonisation 



Ray Casting 
See: ray marching; sphere tracing 

 ● SDF(P) = Distance to closest 
point on surface  

● (Closest point’s actual location not known) 

● Step along ray by SDF(P) 
until SDF(P)~0 

● Skips empty space! 

 



Ray Casting 

● Accuracy depends on iteration count 

● Primary rays require high accuracy 

● 50-100 iterations -> slow 

● Result is transitory, view dependent 

● Useful for secondary rays 

● Can get away with fewer iterations 

● Do something else for primary hits 

 

 

 



Polygonisation / Meshing  

● Generate triangle mesh from SDF 

● Rasterise as for any other mesh 

● Suits 3D hardware 

● Integrate with existing render pipeline 

● Reuse mesh between passes / frames 

● Speed not dependent on screen resolution 

● Use Marching Cubes 



Marching Cubes In One Slide 

● Operates on a discrete grid 

● Evaluate field F() at 8 corners of each 
cubic cell 

● Generate sign flag per corner, OR together 

● Where sign(F) changes across corners, 
triangles are generated 

● 5 per cell max 

● Lookup table defines triangle pattern 

 



Marching Cubes Issues 

● Large number of grid cells 

● 128x128x128 = 2 million cells 

● Only process whole grid when necessary 

● Triangle count varies hugely by field contents 

● Can change radically every frame 

● Upper bound very large: -> size of grid 

● Most cells empty: actual output count relatively small 

● Traditionally implemented on CPU 

 



Geometry Shader Marching Cubes 

● CPU submits a large, empty draw call 
● One point primitive per grid cell (i.e. a lot) 

● VS minimal: convert SV_VertexId to cell position 

● GS evaluates marching cubes for cell 
● Outputs 0 to 5 triangles per cell 

● Far too slow: 10ms - 150ms (128^3 grid, architecture-dependent) 

●Work per GS instance varies greatly: poor parallelism 

●Some GPU architectures handle GS very badly 

 

 

 

 



Stream Compaction on GPU 



Stream Compaction 

● Take a sparsely populated array 

 

 

 

● Push all the filled elements together  

● Remember count & offset mapping 

● Now only have to process filled part of array 



Stream Compaction 

● Counting pass - parallel reduction 

● Iteratively halve array size (like mip chain) 

● Write out the sum of the count of parent cells 

● Until final step reached: 1 cell, the total count  

● Offset pass - iterative walk back up 

● Cell offset = parent position + sibling positions 

● Histopyramids: stream compaction in 3D 



Histopyramids 

● Sum down mip chain in blocks 

 

(Imagine it in 3D) 



Histopyramids 

● Count up from base to calculate offsets 



Histopyramids In Use 

● Fill grid volume texture with active mask 

● 0 for empty, 1 for active 

● Generate counts in mip chain downwards 

● Use 2nd volume texture for cell locations 

● Walk up the mip chain  



Compaction In Action 

● Use histopyramid to compact active cells 
●Active cell count now known too 

● GPU dispatches drawcall only for # active cells 
●Use DrawInstancesIndirect 

● GS determines grid position from cell index 
●Use histopyramid for this 

● Generate marching cubes for cell in GS 

 

 

 

 



Compaction Reaction 

● Huge improvement over brute force 

● ~5 ms – down from 11 ms 

● Greatly improves parallelism 

● Reduced draw call size 

● Geometry still generated in GS 

● Runs again for each render pass 

● No indexing / vertex reuse 

 



Geometry Generation 



Generating Geometry 

● Wish to pre-generate geometry (no GS) 
● Reuse geometry between passes; allow indexed vertices  

● First generate active vertices  
● Intersection of grid edges with 0 potential contour 
● Remember vertex index per grid edge in lookup table 
● Vertex count & locations still vary by potential field contents  

● Then generate indices  
● Make use of the vertex index lookup 

 
 

 



Generating Vertex Data 

● Process potential grid in CS 
● One cell per thread 
● Find active edges in each cell 

● Output vertices per cell 
● IncrementCounter() on vertex buffer 

●Returns current num vertices written 

● Write vertex to end of buffer at current counter 
● Write counter to edge index lookup: scattered write 

● Or use 2nd histopyramid for vertex data instead 
 



Generating Geometry 

● Now generate index data with another CS 

● Histopyramid as before..  

● .. But use edge index grid lookup to locate indices 

● DispatchIndirect to limit dispatch to # active cells 

● Render geom: DrawIndexedInstancedIndirect 

● GPU draw call: index count copied from histopyramid 

● No GS required! Generation can take just 2ms 



Meshing Improvements 



Smoothing 



Smoothing More 



Smoothing 

● Laplacian smooth 

● Average vertices along edge connections 

● Key for improving quality of fluid dynamics meshing 

● Must know vertex edge connections 

● Generate from index buffer in post process 

 

 



Bucket Sorting Arrays 

● Need to bucket elements of an array? 

● E.g. Spatial hash; particles per grid cell; 
triangles connected to each vertex  

● Each bucket has varying # elements 

● Don’t want to over-allocate buckets 

● Allocate only # elements in array 

 



Counting Sort 

● Use Counting Sort 

● Counting pass – count # elements per bucket 

● Use atomics for parallel op – InterlockedAdd() 

● Compute Parallel Prefix Sum  

● Like a 1d histopyramid.. See CUDA SDK  

● Finds offset for each bucket in element array 

● Then assign elements to buckets 

● Reuse counter buffer to track idx in bucket 

 



Smoothing Process 

● Use Counting Sort: bucket triangles per 
vertex 

● Post-process: determine edges per vertex  

● Smooth vertices 

● (Original Vertex * 4 + Sum[Connected Vertices]) / (4 
+ Connected Vertex Count) 

● Iterate smooth process to increase smoothness 

 



0 Smoothing Iterations 



4 Smoothing Iterations 



8 Smoothing Iterations 



16 Smoothing Iterations 



Subdivision, Smooth Normals 

● Use existing vertex connectivity data 

● Subdivision: split edges, rebuild indices 

● 1 new vertex per edge 

● 4 new triangles replace 1 old triangle 

● Calc smooth vertex normals from final mesh 

● Use vertex / triangle connectivity data 

● Average triangle face normals per vertex 

● Very fast – minimal overhead on total generation cost 

 

 



Performance 

● Same scene, 128^3 grid, Geforce 570 

● Brute force GS version: 11 ms per pass 

● No reuse – shadowmap passes add 11ms each  

● Generating geometry in CS: 2 ms + 0.4 ms per 
pass 

● 2ms to generate geometry in CS; 0.4ms to render it 

● Generated geometry reused between shadow passes 

 

 

 



Video 

● (Video Removed) 
● (A tidal wave thing through a city. It was well cool!!!!!1) 



Wait, Was That Fluid Dynamics? 

Yes, It Was. 



Smoothed Particle Hydrodynamics 

● Solver works on particles 

● Particles represent point samples of fluid in space 

● Locate local neighbours for each particle 

● Find all particles inside a particle’s smoothing radius 

● Neighbourhood search – can be expensive 

● Solve fluid forces between particles within radius 

● We use Compute for most of this 

 



Neighbourhood Search 

● Spatially bucket particles using spatial hash 

● Return of Counting Sort - with a histopyramid 

● In this case: hash is quantised 3D position 

● Bucket particles into hashed cells 



SPH Process – Step by Step 

● Bucket particles into cells  

● Evaluate all particles.. 

● Find particle neighbours from cell structure 

● Must check all nearby cells inside search radius too 

● Sum forces on particles from all neighbours 

● Simple equation based on distance and velocities 

● Return new acceleration 

 



SPH Performance 

● Performance depends on # neighbours evaluated 

● Determined by cell granularity, particle search radius, 
number of particles in system, area covered by system 

● Favour small cell granularity 

● Easier to reduce # particles tested at cell level 

● Balance particle radius by hand 

● Smoothness vs performance 

 



SPH Performance 

● In practice this is still far, far too slow (>200ms) 

● Can check > 100 cells, too many particle interactions 

● So we cheat.. 

● Average particle positions + velocities in each cell 

● Use average value for particles vs distant cells 

● Force vectors produced close enough to real values.. 

● Only use real particle positions for close cells 

 



Illumination 

The Rendering Pipeline of the Future 



Rendering Pipeline of the Future 
● Primary rays are rasterised 

● Fast: rasterisation still faster for typical game meshes 

● Use for camera / GBuffers, shadow maps  

● Secondary rays are traced  

● Use GBuffers to get starting point 

● Global illumination / ambient occlusion, reflections 

● Paths are complex – bounce, scatter, diverge 

● Needs full scene knowledge – hard for rasterisation 

● Tend to need less accuracy / sharpness..  



Ambient Occlusion Ray Tracing 

● Cast many random rays out from surface  

● Monte-Carlo style 

● AO result = % of rays that reach sky 

● Slow..  

● Poor ray coherence 

● Lots of rays per pixel needed for good result 

● Some fakes available  

● SSAO & variants – largely horrible..  



Ambient Occlusion with SDFs 

● Raytrace SDFs to calculate AO 

● Accuracy less important (than primary rays) 

● Less SDF iterations – < 20, not 50-100 

● Limit ray length  

● We don’t really “ray cast”.. 

● Just sample multiple points along ray  

● Ray result is a function of SDF distance at points 



4 Rays Per Pixel 



16 Rays Per Pixel 



64 Rays Per Pixel 



256 Rays Per Pixel 



Ambient Occlusion Ray Tracing 

● Good performance: 4 rays; Quality: 64 rays 

● Try to plug quality/performance gap 

● Could bilateral filter / blur  

● Few samples, smooth results spatially (then add noise) 

● Or use temporal reprojection 

● Few samples, refine results temporally 

● Randomise rays differently every frame 

 



Temporal Reprojection 
● Keep previous frame’s data 

● Previous result buffer, normals/depths, view matrix 

● Reproject current frame  previous frame 

● Current view position * view inverse * previous view 

● Sample previous frame’s result, blend with current 

● Reject sample if normals/depths differ too much 

● Problem: rejected samples / holes 

 



Video 

● (Video Removed) 
● (Basically it looks noisy, then temporally refines, then when the camera moves you see holes) 



Temporal Reprojection: Good 



Temporal Reprojection: Holes 



Hole Filling 

● Reprojection works if you can fill holes nicely 

● Easy to fill holes for AO: just cast more rays 

● Cast 16 rays for pixels in holes, 1 for the rest 

● Adversely affects performance 

● Work between local pixels differs greatly 

● CS thread groups wait on longest thread 

● Some threads take 16x longer than others to complete 



Video 

● (Video Removed) 
● (It looks all good cos the holes are filled) 



Rays Per Thread 



Hole Filling 

● Solution: balance rays across threads in CS 

● 16x16 pixel tiles: 256 threads in group 

● Compute & sum up required rays in tile 

● 1 pixel per thread 

● 1 for reprojected pixels; 16 for hole pixels 

● Spread ray evaluation across cores evenly 

● N rays per thread 

 

 
 



Rays Per Thread - Tiles 



Video 

● (Video Removed) 
● (It still looks all good cos the holes are filled, by way of proof I’m not lying about the technique) 



Performance 

● 16 rays per pixel: 30 ms 

● 1 ray per pixel, reproject: 2 ms 

● 1 + 16 in holes, reproject: 12 ms  

● 1 + 16 rays, load balanced tiles: 4 ms 

● ~ 2 rays per thread typical! 



Looking Forward 



Looking Forward 

● Multiple representations of same world 

● Geometry + SDFs 

● Rasterise them 

● Trace them 

● Collide with them 

●  World can be more dynamic. 

 



http://directtovideo.wordpress.com 
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