
Advanced Procedural Rendering
in DirectX 11

Matt Swoboda
Principal Engineer, SCEE R&D PhyreEngine™ Team

Demo Coder, Fairlight

Aim

● More dynamic game worlds.

Demoscene?
● I make demos

● “Like games, crossed with music videos”

● Linear, non-interactive, scripted

● All generated in real-time

● On consumer-level PC hardware

● Usually effect-driven & dynamic

● Relatively light on static artist-built data

● Often heavy on procedural & generative content

DirectX 11?

● DirectX 9 is very old
● We are all very comfortable with it..
● .. But does not map well to modern graphics hardware

● DirectX 11 lets you use same hardware smarter
● Compute shaders
● Much improved shading language
● GPU-dispatched draw calls
● .. And much more

Procedural Mesh Generation

A reasonable result from random formulae
(Hopefully a good result from sensible formulae)

Signed Distance Fields (SDFs)

● Distance function:

● Returns the closest distance to the surface from a
given point

● Signed distance function:

● Returns the closest distance from a point to the
surface, positive if the point is outside the shape and
negative if inside

Signed Distance Fields

● Useful tool for procedural geometry creation

● Easy to define in code ..

● .. Reasonable results from “random formulae”

● Can create from meshes, particles, fluids, voxels

● CSG, distortion, repeats, transforms all easy

● No concerns with geometric topology

● Just define the field in space, polygonize later

A Box
Box(pos, size)

{

 a = abs(pos-size) - size;

 return max(a.x,a.y,a.z);

}

*Danger: may not actually compile

Cutting with Booleans

d = Box(pos)

c = fmod(pos * A, B)

subD = max(c.y,min(c.y,c.z))

d = max(d, -subD)

More Booleans

d = Box(pos)

c = fmod(pos * A, B)

subD = max(c.y,min(c.y,c.z))

subD = min(subD,cylinder(c))

subD = max(subD, Windows())

d = max(d, -subD)

Repeated Booleans

d = Box(pos)

e = fmod(pos + N, M)

floorD = Box(e)

d = max(d, -floorD)

Cutting Holes

d = Box(pos)

e = fmod(pos + N, M)

floorD = Box(e)

floorD = min(floorD,holes())

d = max(d, -floorD)

Combined Result

d = Box(pos)

c = fmod(pos * A, B)

subD = max(c.y,min(c.y,c.z))

subD = min(subD,cylinder(c))

subD = max(subD, Windows())

e = fmod(pos + N, M)

floorD = Box(e)

floorD = min(floorD,holes())

d = max(d, -subD)

d = max(d, -floorD)

Repeating the Space
pos.y = frac(pos.y)

d = Box(pos)

c = fmod(pos * A, B)

subD = max(c.y,min(c.y,c.z))

subD = min(subD,cylinder(c))

subD = max(subD, Windows())

e = fmod(pos + N, M)

floorD = Box(e)

floorD = min(floorD,holes())

d = max(d, -subD)

d = max(d, -floorD)

Repeating the Space
pos.xy = frac(pos.xy)

d = Box(pos)

c = fmod(pos * A, B)

subD = max(c.y,min(c.y,c.z))

subD = min(subD,cylinder(c))

subD = max(subD, Windows())

e = fmod(pos + N, M)

floorD = Box(e)

floorD = min(floorD,holes())

d = max(d, -subD)

d = max(d, -floorD)

Details
AddDetails()

Details
DoLighting()

ToneMap()

Details
AddDeferredTexture()

AddGodRays()

Details
MoveCamera()

MakeLookGood()

Ship It.

Procedural SDFs in Practice

● Generated scenes probably won’t replace 3D artists

Procedural SDFs in Practice

● Generated scenes probably won’t replace 3D artists

 

Procedural SDFs in Practice

● Generated scenes probably won’t replace 3D artists

● Generated SDFs good proxies for real meshes
● Code to combine a few primitives cheaper than art data

● Combine with artist-built meshes converted to SDFs
● Boolean, modify, cut, distort procedurally

Video

● (Video Removed)
● (It’s a cube morphing into a mesh. You know, just for fun etc.)

SDFs From Triangle Meshes

SDFs from Triangle Meshes

● Convert triangle mesh to SDF in 3D texture

● 32^3 – 256^3 volume texture typical

● SDFs interpolate well..  bicubic interpolation

● .. Low resolution 3D textures still work well

● Agnostic to poly count (except for processing time)

● Can often be done offline

SDFs from Triangle Meshes

A mesh converted to a 64x64x64 SDF and polygonised.
It’s two people doing yoga, by the way.

SDFs from Triangle Meshes

● Naïve approach?
● Compute distance from every cell to every triangle

● Very slow but accurate

● Voxelize mesh to grid, then sweep?  UGLY
● Sweep to compute signed distance from voxels to cells

● Voxelization too inaccurate near surface..

● ..But near-surface distance is important - interpolation

● Combine accurate triangle distance and sweep

Geometry Stages

● Bind 3D texture target

● VS transforms to SDF space

● Geometry shader replicates
triangle to affected slices

● Flatten triangle to 2D

● Output positions as TEXCOORDs..

● .. All 3 positions for each vertex

Pixel Shader Stage

● Calculates distance from 3D pixel to triangle

● Compute closest position on triangle

● Evaluate vertex normal using barycentric

● Evaluate distance sign using weighted normal

● Write signed distance to output color, distance to depth

● Depth test keeps closest distance

Post Processing Step

● Cells around mesh surface now contain accurate
signed distance

● Rest of grid is empty

● Fill out rest of the grid in post process CS

● Fast Sweeping algorithm

Fast Sweeping

d = maxPossibleDistance

for i = 0 to row length

 d += cellSize

 if(abs(cell[i]) > abs(d))

 cell[i] = d

 else

 d = cell[i]

● Requires ability to read
and write same buffer

● One thread per row
● Thread R/W doesn’t overlap

● No interlock needed

● Sweep forwards then
backwards on same axis

● Sweep each axis in turn

SDFs from Particle Systems

SDFs From Particle Systems

● Naïve: treat each particle as a sphere

● Compute min distance from point to particles

● Better: use metaball blobby equation
● Density(P) = Sum[(1 – (r2/R2))3] for all particles

● R : radius threshold

● r : distance from particle to point P

● Problem: checking all particles per cell

Evaluating Particles Per Cell

● Bucket sort particles into grid cells in CS

● Evaluate a kernel around each cell

● Sum potentials from particles in neighbouring cells

● 9x9x9 kernel typical
● (729 cells, containing multiple particles per cell, evaluated for ~2 million grid cells)

● Gives accurate result .. glacially

● > 200ms on Geforce 570

Evaluating Particles, Fast

● Render single points into grid

● Write out particle position with additive blend

● Sum particle count in alpha channel

● Post process grid

● Divide by count: get average position of particles in cell

● Evaluate potentials with kernel - grid cells only

● Use grid cell average position as proxy for particles

Evaluating Particles, Faster

● Evaluating potentials accurately far too slow
● Summing e.g. 9x9x9 cell potentials for each cell..

● Still > 100 ms for our test cases

● Use separable blur to spread potentials instead
● Not quite 100% accurate.. But close enough

● Calculate blur weights with potential function to at least feign
correctness

● Hugely faster - < 2 ms

Visualising Distance Fields

Ray Tracing & Polygonisation

Ray Casting
See: ray marching; sphere tracing

 ● SDF(P) = Distance to closest
point on surface

● (Closest point’s actual location not known)

● Step along ray by SDF(P)
until SDF(P)~0

● Skips empty space!

Ray Casting

● Accuracy depends on iteration count

● Primary rays require high accuracy

● 50-100 iterations -> slow

● Result is transitory, view dependent

● Useful for secondary rays

● Can get away with fewer iterations

● Do something else for primary hits

Polygonisation / Meshing

● Generate triangle mesh from SDF

● Rasterise as for any other mesh

● Suits 3D hardware

● Integrate with existing render pipeline

● Reuse mesh between passes / frames

● Speed not dependent on screen resolution

● Use Marching Cubes

Marching Cubes In One Slide

● Operates on a discrete grid

● Evaluate field F() at 8 corners of each
cubic cell

● Generate sign flag per corner, OR together

● Where sign(F) changes across corners,
triangles are generated

● 5 per cell max

● Lookup table defines triangle pattern

Marching Cubes Issues

● Large number of grid cells

● 128x128x128 = 2 million cells

● Only process whole grid when necessary

● Triangle count varies hugely by field contents

● Can change radically every frame

● Upper bound very large: -> size of grid

● Most cells empty: actual output count relatively small

● Traditionally implemented on CPU

Geometry Shader Marching Cubes

● CPU submits a large, empty draw call
● One point primitive per grid cell (i.e. a lot)

● VS minimal: convert SV_VertexId to cell position

● GS evaluates marching cubes for cell
● Outputs 0 to 5 triangles per cell

● Far too slow: 10ms - 150ms (128^3 grid, architecture-dependent)

●Work per GS instance varies greatly: poor parallelism

●Some GPU architectures handle GS very badly

Stream Compaction on GPU

Stream Compaction

● Take a sparsely populated array

● Push all the filled elements together

● Remember count & offset mapping

● Now only have to process filled part of array

Stream Compaction

● Counting pass - parallel reduction

● Iteratively halve array size (like mip chain)

● Write out the sum of the count of parent cells

● Until final step reached: 1 cell, the total count

● Offset pass - iterative walk back up

● Cell offset = parent position + sibling positions

● Histopyramids: stream compaction in 3D

Histopyramids

● Sum down mip chain in blocks

(Imagine it in 3D)

Histopyramids

● Count up from base to calculate offsets

Histopyramids In Use

● Fill grid volume texture with active mask

● 0 for empty, 1 for active

● Generate counts in mip chain downwards

● Use 2nd volume texture for cell locations

● Walk up the mip chain

Compaction In Action

● Use histopyramid to compact active cells
●Active cell count now known too

● GPU dispatches drawcall only for # active cells
●Use DrawInstancesIndirect

● GS determines grid position from cell index
●Use histopyramid for this

● Generate marching cubes for cell in GS

Compaction Reaction

● Huge improvement over brute force

● ~5 ms – down from 11 ms

● Greatly improves parallelism

● Reduced draw call size

● Geometry still generated in GS

● Runs again for each render pass

● No indexing / vertex reuse

Geometry Generation

Generating Geometry

● Wish to pre-generate geometry (no GS)
● Reuse geometry between passes; allow indexed vertices

● First generate active vertices
● Intersection of grid edges with 0 potential contour
● Remember vertex index per grid edge in lookup table
● Vertex count & locations still vary by potential field contents

● Then generate indices
● Make use of the vertex index lookup

Generating Vertex Data

● Process potential grid in CS
● One cell per thread
● Find active edges in each cell

● Output vertices per cell
● IncrementCounter() on vertex buffer

●Returns current num vertices written

● Write vertex to end of buffer at current counter
● Write counter to edge index lookup: scattered write

● Or use 2nd histopyramid for vertex data instead

Generating Geometry

● Now generate index data with another CS

● Histopyramid as before..

● .. But use edge index grid lookup to locate indices

● DispatchIndirect to limit dispatch to # active cells

● Render geom: DrawIndexedInstancedIndirect

● GPU draw call: index count copied from histopyramid

● No GS required! Generation can take just 2ms

Meshing Improvements

Smoothing

Smoothing More

Smoothing

● Laplacian smooth

● Average vertices along edge connections

● Key for improving quality of fluid dynamics meshing

● Must know vertex edge connections

● Generate from index buffer in post process

Bucket Sorting Arrays

● Need to bucket elements of an array?

● E.g. Spatial hash; particles per grid cell;
triangles connected to each vertex

● Each bucket has varying # elements

● Don’t want to over-allocate buckets

● Allocate only # elements in array

Counting Sort

● Use Counting Sort

● Counting pass – count # elements per bucket

● Use atomics for parallel op – InterlockedAdd()

● Compute Parallel Prefix Sum

● Like a 1d histopyramid.. See CUDA SDK

● Finds offset for each bucket in element array

● Then assign elements to buckets

● Reuse counter buffer to track idx in bucket

Smoothing Process

● Use Counting Sort: bucket triangles per
vertex

● Post-process: determine edges per vertex

● Smooth vertices

● (Original Vertex * 4 + Sum[Connected Vertices]) / (4
+ Connected Vertex Count)

● Iterate smooth process to increase smoothness

0 Smoothing Iterations

4 Smoothing Iterations

8 Smoothing Iterations

16 Smoothing Iterations

Subdivision, Smooth Normals

● Use existing vertex connectivity data

● Subdivision: split edges, rebuild indices

● 1 new vertex per edge

● 4 new triangles replace 1 old triangle

● Calc smooth vertex normals from final mesh

● Use vertex / triangle connectivity data

● Average triangle face normals per vertex

● Very fast – minimal overhead on total generation cost

Performance

● Same scene, 128^3 grid, Geforce 570

● Brute force GS version: 11 ms per pass

● No reuse – shadowmap passes add 11ms each

● Generating geometry in CS: 2 ms + 0.4 ms per
pass

● 2ms to generate geometry in CS; 0.4ms to render it

● Generated geometry reused between shadow passes

Video

● (Video Removed)
● (A tidal wave thing through a city. It was well cool!!!!!1)

Wait, Was That Fluid Dynamics?

Yes, It Was.

Smoothed Particle Hydrodynamics

● Solver works on particles

● Particles represent point samples of fluid in space

● Locate local neighbours for each particle

● Find all particles inside a particle’s smoothing radius

● Neighbourhood search – can be expensive

● Solve fluid forces between particles within radius

● We use Compute for most of this

Neighbourhood Search

● Spatially bucket particles using spatial hash

● Return of Counting Sort - with a histopyramid

● In this case: hash is quantised 3D position

● Bucket particles into hashed cells

SPH Process – Step by Step

● Bucket particles into cells

● Evaluate all particles..

● Find particle neighbours from cell structure

● Must check all nearby cells inside search radius too

● Sum forces on particles from all neighbours

● Simple equation based on distance and velocities

● Return new acceleration

SPH Performance

● Performance depends on # neighbours evaluated

● Determined by cell granularity, particle search radius,
number of particles in system, area covered by system

● Favour small cell granularity

● Easier to reduce # particles tested at cell level

● Balance particle radius by hand

● Smoothness vs performance

SPH Performance

● In practice this is still far, far too slow (>200ms)

● Can check > 100 cells, too many particle interactions

● So we cheat..

● Average particle positions + velocities in each cell

● Use average value for particles vs distant cells

● Force vectors produced close enough to real values..

● Only use real particle positions for close cells

Illumination

The Rendering Pipeline of the Future

Rendering Pipeline of the Future
● Primary rays are rasterised

● Fast: rasterisation still faster for typical game meshes

● Use for camera / GBuffers, shadow maps

● Secondary rays are traced

● Use GBuffers to get starting point

● Global illumination / ambient occlusion, reflections

● Paths are complex – bounce, scatter, diverge

● Needs full scene knowledge – hard for rasterisation

● Tend to need less accuracy / sharpness..

Ambient Occlusion Ray Tracing

● Cast many random rays out from surface

● Monte-Carlo style

● AO result = % of rays that reach sky

● Slow..

● Poor ray coherence

● Lots of rays per pixel needed for good result

● Some fakes available

● SSAO & variants – largely horrible.. 

Ambient Occlusion with SDFs

● Raytrace SDFs to calculate AO

● Accuracy less important (than primary rays)

● Less SDF iterations – < 20, not 50-100

● Limit ray length

● We don’t really “ray cast”..

● Just sample multiple points along ray

● Ray result is a function of SDF distance at points

4 Rays Per Pixel

16 Rays Per Pixel

64 Rays Per Pixel

256 Rays Per Pixel

Ambient Occlusion Ray Tracing

● Good performance: 4 rays; Quality: 64 rays

● Try to plug quality/performance gap

● Could bilateral filter / blur

● Few samples, smooth results spatially (then add noise)

● Or use temporal reprojection

● Few samples, refine results temporally

● Randomise rays differently every frame

Temporal Reprojection
● Keep previous frame’s data

● Previous result buffer, normals/depths, view matrix

● Reproject current frame  previous frame

● Current view position * view inverse * previous view

● Sample previous frame’s result, blend with current

● Reject sample if normals/depths differ too much

● Problem: rejected samples / holes

Video

● (Video Removed)
● (Basically it looks noisy, then temporally refines, then when the camera moves you see holes)

Temporal Reprojection: Good

Temporal Reprojection: Holes

Hole Filling

● Reprojection works if you can fill holes nicely

● Easy to fill holes for AO: just cast more rays

● Cast 16 rays for pixels in holes, 1 for the rest

● Adversely affects performance

● Work between local pixels differs greatly

● CS thread groups wait on longest thread

● Some threads take 16x longer than others to complete

Video

● (Video Removed)
● (It looks all good cos the holes are filled)

Rays Per Thread

Hole Filling

● Solution: balance rays across threads in CS

● 16x16 pixel tiles: 256 threads in group

● Compute & sum up required rays in tile

● 1 pixel per thread

● 1 for reprojected pixels; 16 for hole pixels

● Spread ray evaluation across cores evenly

● N rays per thread

Rays Per Thread - Tiles

Video

● (Video Removed)
● (It still looks all good cos the holes are filled, by way of proof I’m not lying about the technique)

Performance

● 16 rays per pixel: 30 ms

● 1 ray per pixel, reproject: 2 ms

● 1 + 16 in holes, reproject: 12 ms

● 1 + 16 rays, load balanced tiles: 4 ms

● ~ 2 rays per thread typical!

Looking Forward

Looking Forward

● Multiple representations of same world

● Geometry + SDFs

● Rasterise them

● Trace them

● Collide with them

●  World can be more dynamic.

http://directtovideo.wordpress.com

Thanks

● Jani Isoranta, Kenny Magnusson for 3D

● Angeldawn for the Fairlight logo

● Jussi Laakonen, Chris Butcher for actually making this talk
happen

● SCEE R&D for allowing this to happen

● Guillaume Werle, Steve Tovey, Rich Forster, Angelo Pesce,
Dominik Ries for slide reviews

References

● High-speed Marching Cubes using Histogram Pyramids; Dyken, Ziegler et al.

● Sphere Tracing: a geometric method for the antialiased ray tracing of implicit
surfaces; John C. Hart

● Rendering Worlds With Two Triangles; Inigo Quilezles

● Fast approximations for global illumination on dynamic scenes; Alex Evans

